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Abstract -The utilization of the artificial neural network 

method (ANN) is widespread for both modeling and 

optimizing manufacturing processes.The determinationof 

optimum processing parameters assumes a pivotal role in 

addressing cost and time considerations within the 

manufacturing domain. Notably, the burnishing process 

presents a straight forward, uncomplicated, and cost-

efficient technique, thereby frequently supplanting 

alternative surface finishing methodologies in the 

manufacturing sector. This research delves into the 

exploration of burnishing parameters, encompassing factors 

such as the count of passes, penetration depth, burnishing 

speed, and feed rate. These parameters are examined in 

relation to their impact on the surface roughness of EN 19 

alloy steel. The outcome of this investigation underscore the 

viability of utilizing ANN models to accurately predict the 

results of surface roughness for the burnishing process [28]. 

Consequently, the optimal validation performance, coupled 

with high coefficient of determination (R) values, culminates 

in the accurate prediction of surface roughness outcomes for 

the burnishing process through the adept utilization of ANN 

models [27]. 
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INTRODUCTION 

 

Surface quality holds significant importance in assessing 

both the effectiveness of machine tools and the quality of 
machined components. Consequently, attaining the 

intended surface quality stands as a crucial factor 

influencing the operational effectiveness of mechanical 

elements [2]. Particularly, surface roughness assumes a 

pivotal role as a key quality parameter for machined 

surfaces. This parameters impact extends to numerous 

attributes, including wear resistance, fatigue strength, 

coefficient of friction, lubrication, wear rate, and 

corrosion resistance of machined parts [7].In the 

contemporary landscape of manufacturing, paramount 

emphasis is placed on achieving precise dimensions and 
impeccable surface texture. This accentuates the 

significance of quantifying and characterizing surface 

finish as an anticipatory gauge for machining 

effectiveness. Among cold-working finishing techniques, 

burnishing emerges distinctively, setting it apart from 

counterparts like shot peening and sand blasting. Unlike 

others, burnishing yields both a refined surface finish and 

introduces residual compressive stresses within the 

metallic surface strata [3, 4]. This sets burnishing apart 

from chip-forming finishing methods such as grinding, 

honing, lapping, and super-finishing, which instead give 
rise to residual tensile stresses at the machined surface 

layers [2]. Additionally, burnishing offers economic 

appeal due to its simplicity and cost- effectiveness, 

demanding less time and skill while achieving a high 

calibre surface finish [2]. 

The burnishing procedure entails the application of 

substantial pressure using a meticulously polished, rigid 

ball, or roller onto a metallic surface. As illustrated in 

figure 1 [26], when the applied burnishing pressure 

surpasses the yield strength of the metal, the elevated 

pressure compels the surface’s peaks to undergo a 
permanent spreading effectively filling in the troughs [4]. 

This results in the surface of the metallic material 

becoming more even, accompanied by the induction of 

plastic deformation that confers work hardening. 

Consequently, the material retains a residual stress 

distribution, characterized by compressive forces exerted 

on the surface [4]. 

 
Fig. 1 Schematic diagram of Basic Principle of Roller Burnishing [26] 

 

Numerous authors have contended that burnishing yields 

enhancements in various surface attributes, including 

surface hardness, wear resistance, fatigue resistance, yield 

and tensile strength, as well as corrosion resistance [10]. 

In light of this, the current study sought to delve into the 

impact of burnishing parameters, specifically depth of 

penetration, number of tool passes, feed rate and 

burnishing speed on the surface roughness of EN 19 alloy 
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steel [29]. This investigation was conducted utilizing 

Artificial Neural Networks (ANN)[2]. 

 

MATERIAL AND EXPERIMENTAL PROCEDURE 

 
Within the scope of this investigation, the chosen material 

for the work piece is ‘EN-19 Grade Alloy Steel,’ a 

prevalent selection in the realm of automobile 

manufacturing. The chemical composition details of this 

material are provided in Table I for reference[25]. 

 
TABLE I 

Chemical Composition of EN 19 alloy steel used for experimental 

investigation [25]. 

Element  C Mn Si S P Cr Ni Mo 

Wt (%) 0.44 0.79 0.19 0.03 0.01 1.06 0.08 0.28 

 

The ACE Designers CNC lathe (Junior Jobber), equipped 

with a Fanuc controller [25], and was employed to 

conduct all burnishing tests. The initial work pieces were 

cylindrical, featuring a diameter of 32 mm and a length of 
200 mm. Subsequently, these work pieces underwent 

turning processes to achieve specific dimensions of 

30mm in diameter and 183 mm in length. For the rough 

turning phase, the following machining parameters were 

employed: a rotational speed of 2000 rpm, a feed rate of 

0.2 mm/rev, a 1 mm depth of cut, a cutting speed of 120 

mm/min, and the utilization of a TNMG160408 tool 

insert. During the finishing turning phase, distinct 

parameters were applied: a speed of 2500 rpm, a feed rate 

of 0.1 mm/rev, and a depth of cut of 0.25 mm. 

Additionally, small grooves, each spanning 2 mm, were 
introduced at 40 mm intervals to partition the turned work 

piece into four segments. The complexity of the process 

necessitates a substantial number of experiments to 

comprehensively grasp its intricacies. Unfortunately, this 

approach is both time-intensive and costly. To mitigate 

these challenges, a more efficient strategy involving 

experimental layout planning based on design of 

experiments principles has been proposed. This approach 

entails varying levels of the process variables, with a 

focus on brushing speed, burnishing feed, depth of 

penetration, and the number of tool passes. These 

selections are informed by prior investigations in the 
field.[1] With the objective of exploring the impact of 

process parameters on the resultant performance output, 

an experiment was meticulously planned and executed. 

This endeavour focused on gauging surface roughness 

and surface hardness as the primary responses. The 

process parameters of interest were deliberately altered 

across a spectrum ranging from the lowest to the highest 

values for each factor, a concise overview of which is 

encapsulated in table II [4]. 
 

 

 

TABLE II 

Factors and levels for CCD [25]. 

 

Coded levels -2 -1 0 1 2 

 Burnishing 

Speed, rpm  
1000 1100 1200 1300 1400 

 Burnishing 

Feed, mm/rev  
0.04 0.05 0.06 0.07 0.08 

Depth of 

Penetration, 

mm  

0.1 0.2 0.3 0.4 0.5 

Number of 

Passes  
1 2 3 4 5 

 

Figure 2 (a) provides a visual representation of the roller 

burnishing tool assembly, meticulously designed and 
fabricated [25]. The CNC turret served as the platform for 

affixing the burnishing tool, while the work piece was 

secured using the tailstock centre. The burnishing process 

was facilitated with the application of lubricant, as 

depicted in figure 2 (b). The challenge arises in selecting 

an appropriate amount of training and testing data due to 

diversity of available opinions for different applications. 

 

 

 
Fig.2. (a) Photographic view of roller burnishing tool [25] 

 
Fig.2 (b) Experiment setup of roller burnishing process [25] 

 

The objective of this current study was to examine the 

influence of burnishing parameters- including Depth of 

Penetration (mm), number of tool passes (N), feed rate 

( f/(mm/min)), and burnishing speed (v/(r/min))- on the 

surface roughness (Ra/µm) of EN19 Alloy Steel. This 

investigation was conducted utilizing Artificial Neural 
Networks (ANN) [2]. 

 

UtilizingArtificial Neural Networks (ANN) for Modeling 

 

Computers play an essential role in the daily operations 

of engineering design, aiding engineers in enhancing their 

designs through the use of diverse applications [12]. 



 

 

 

Artificial Neural Networks (ANNs) emulate fundamental 

elements of brain functions [13-15], drawing inspiration 

from the neural architecture of the human brain. This 

architecture processes information through intricate 

interactions between numerous neurons [13,16]. 
Over the recent years, there has been a consistent surge in 

the fascination with neural network modeling across 

various domains within materials science. The 

fundamental building block of an Artificial Neural 

Network (ANN) is the neuron, which is interconnected 

with other neurons through weight factors. The training 

of a network typically involves the utilization of a 

substantial amount of input data along with their 

corresponding output values [17]. The architecture of the 

ANN employed for modeling surface roughness is 

depicted in figure 3. This design encompasses numerous 

simple processing neurons organized sequentially into 
layers: the input layer, intermediate (hidden) layers, and 

the output layer. Simulation within this framework 

revolves around establishing a meaningful connection 

between a set of neurons representing input data and their 

corresponding established outputs, the thoughtful 

selection of input parameters emerges as a critically 

important aspect within the domain of neural network 

modeling [17]. 

All relevant input parameters need to be included in the 

neural network’s input data representation. In this 

specific investigation, the inputs consisted of burnishing 
force, number of passes, feed rate, and burnishing speed. 

These inputs were used to characterize the output, which 

was the surface roughness measurement. The architecture 

utilized for the ANN model follows a multilayer 

configuration of 4:5:5:1, as visually depicted in figure 3. 

The outputs of the hidden neurons are labelled as Yj (j=1, 

2,…, 5) and Yi (i= 1,2,….,5). To ensure optimal print 

quality of results, the incorporation of high-resolution 

figures, plots, drawings, and photographs is essential, 

ideally exceeding 300 dpi. 

 

The Training of the Network [30] 
 

In general, three distinct learning strategies are employed 

[31]. Firstly, in supervised learning, the trainer imparts 

what the network should comprehend. Secondly, in 

reinforcement learning, the trainer indicates the 

correctness of outputs without explicitly instructing what 

should be learned. Lastly, unsupervised learning involves 

the network learning autonomously without the trainer’s 

intervention. The learning set comprises inputs and 

outputs employed for network training. In supervised 

learning, the required outputs are included in this set, 
whereas they are absent in other scenarios [17, 18]. For 

this particular investigation, the approach of supervised 

learning was adopted. The development of the computer 

program was executed using MATLAB [19] 

 
Fig. 3 ANN model for burnishing process 

TABLE III 

Experimental result and training set of ANN modeling 

Run 
Speed 

(rpm) 

Feed 

(mm/rev) 

Depth of 

Penetratio

n (mm) 

Number 

of Passes 

Surface 

Roughness 

(um) 

1 1100 0.05 0.2 4 0.45 

2 1200 0.06 0.3 3 0.323 

3 1100 0.07 0.2 4 0.704 

4 1200 0.08 0.3 3 0.391 

5 1200 0.06 0.3 3 0.49 

6 1200 0.04 0.3 3 0.545 

7 1000 0.06 0.3 3 0.359 

8 1100 0.07 0.4 2 0.345 

9 1300 0.05 0.2 2 0.39 

10 1300 0.07 0.2 4 0.25 

11 1200 0.06 0.3 3 0.429 

12 1200 0.06 0.1 3 0.478 

13 1100 0.05 0.2 2 0.49 

14 1100 0.07 0.4 4 0.512 

15 1200 0.06 0.5 3 0.362 

16 1400 0.06 0.3 3 0.231 

17 1100 0.05 0.4 4 0.515 

18 1200 0.06 0.3 1 0.349 

19 1300 0.05 0.2 4 0.454 

20 1300 0.07 0.4 2 0.212 

21 1300 0.05 0.4 4 0.394 

22 1200 0.06 0.3 5 0.391 

23 1200 0.06 0.3 3 0.324 

24 1300 0.05 0.4 2 0.412 

25 1200 0.06 0.3 3 0.622 

26 1100 0.07 0.2 2 0.389 



 

 

 

27 1300 0.07 0.2 2 0.44 

28 1300 0.07 0.4 4 0.378 

29 1100 0.05 0.4 2 0.442 

30 1200 0.06 0.3 3 0.545 

 

Training data results 

[0.45356 0.32084 0.69277 0.3877 0.49063 0.55287 

0.3628 0.34671 0.3877 0.254 0.43108 0.40956 0.55665 

0.61056 0.3877 0.24169 0.51979 0.34727 0.3877 0.23458 

0.39591 0.39163 0.26096 0.41128 0.66189] 

Test results 

[0.37766 0.3877 0.3877 0.29364 0.61119] 

Weights 

[1.272 0.84821 -2.1748 0.22988; 

 0.89496 0.026345 1.486 -1.9895; 

 1.1583 1.6042 1.4419 0.25007; 

 0.043371 -0.64975 1.5251 -1.8005; 

 -1.5124 -1.4079 -1.1812 -1.3767; 

 0.73312 1.2909 -0.070903 1.9588; 

 -1.5882 -1.9661 0.37362 -1.1777; 

 -0.96274 2.6188 0.46789 -0.032456; 

 -1.1578 1.0947 0.98721 1.6094; 

 -1.8576 -0.50732 0.63837 -1.7685] 

Input ranges 

[1100 1300; 

 0.04 0.08; 

 0.1 0.5; 

 1 5] 

Testing Stage 

To evaluate the quality of predictions made by an ANN, 

previously unseen test data is employed, and its outcomes 

are assessed at this phase. Statistical techniques such as 

root mean square error (RMSE) and coefficient of 

determination (R2) values have been utilized for 

comparative analysis [17, 20-23]. 

 

RESULTS AND DISCUSSION 

The performance plot displays how the performance 

function value changes in relation to the iteration number 

specifically concerning surface roughness. It 

encompasses the graphical representation of training 

validation, and test performances. Upon observing the 

graph, it becomes evident that the error consistently 

diminishes with the increase in training epochs. 

Remarkably, the optimal validation performance is 

0.0015 attained at the 0th epoch for surface roughness, as 

visually indicated in figure 4. 

 
 

Fig. 4Performance ANN for surface roughness model 

Figure 5 illustrates a regression analysis showcasing the 

correlation between network outputs and network targets. 

In an ideal training scenario, both the network outputs 
and targets would align perfectly; however real-world 

relationship tends to deviate from perfection. The three 

axes correspond to training, validation, and testing data. 

On each axis, a dashed line represents the ideal scenario 

where outputs match targets. In contrast, the solid line 

indicates the linear regression line that best fits the 

relationship between outputs and targets. 

 
Fig.5 Regression ANN for surface roughness model 

The R-value serves as a gauge for the linkage between 

outputs and targets. An R-value of 1 signifies an exact 

linear correlation, while an R-value near zero indicates a 

lack of linear association. In the context of this study 

[32], the R-value for surface roughness stands at 0.95, 

validating the accuracy of the ANN model’s predictions. 
 

 



 

 

 

TABLE IV 

Comparison of ANN model with experiment results 

Speed feed Depth  Passes 

 ANN 

Model 

Roughness 

Experimental 

Results 

Roughness 

1300 0.07 0.4 4 0.37766 0.378 

1300 0.05 0.2 2 0.3877 0.39 

1200 0.06 0.3 3 0.6119 0.622 

 

CONCLUSION 

This study introduces an ANN-based approach for 

modeling the impacts of roller burnishing parameters 
(depth of penetration, number of passes, feed rate, and 

burnishing speed) on the surface roughness of EN 19 

alloy steel, considering diverse processing parameters. 

The successful implementation of this approach is 

evident. As depicted in fig.5, the predictions made by the 

ANN align closely with experimental outcomes for each 

average surface roughness value. This congruence 

implies that the ANN proves to be a valuable alternative 

[33] for analyzing the influence of burnishing parameters 

on average surface roughness. 
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